Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Res ; 2018: 3215462, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254758

RESUMO

A kinetic study of thioredoxin-glutathione reductase (TGR) from Taenia crassiceps metacestode (cysticerci) was carried out. The results obtained from both initial velocity and product inhibition experiments suggest the enzyme follows a two-site ping-pong bi bi kinetic mechanism, in which both substrates and products are bound in rapid equilibrium fashion. The substrate GSSG exerts inhibition at moderate or high concentrations, which is concomitant with the observation of hysteretic-like progress curves. The effect of NADPH on the apparent hysteretic behavior of TGR was also studied. At low concentrations of NADPH in the presence of moderate concentrations of GSSG, atypical time progress curves were observed, consisting of an initial burst-like stage, followed by a lag whose amplitude and duration depended on the concentration of both NADPH and GSSG. Based on all the kinetic and structural evidence available on TGR, a mechanism-based model was developed. The model assumes a noncompetitive mode of inhibition by GSSG in which the disulfide behaves as an affinity label-like reagent through its binding and reduction at an alternative site, leading the enzyme into an inactive state. The critical points of the model are the persistence of residual GSSG reductase activity in the inhibited GSSG-enzyme complexes and the regeneration of the active form of the enzyme by GSH. Hence, the hysteretic-like progress curves of GSSG reduction by TGR are the result of a continuous competition between GSH and GSSG for driving the enzyme into active or inactive states, respectively. By using an arbitrary but consistent set of rate constants, the experimental full progress curves were successfully reproduced in silico.

2.
Molecules ; 22(2)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28208651

RESUMO

The use of oxygen as the final electron acceptor in aerobic organisms results in an improvement in the energy metabolism. However, as a byproduct of the aerobic metabolism, reactive oxygen species are produced, leaving to the potential risk of an oxidative stress. To contend with such harmful compounds, living organisms have evolved antioxidant strategies. In this sense, the thiol-dependent antioxidant defense systems play a central role. In all cases, cysteine constitutes the major building block on which such systems are constructed, being present in redox substrates such as glutathione, thioredoxin, and trypanothione, as well as at the catalytic site of a variety of reductases and peroxidases. In some cases, the related selenocysteine was incorporated at selected proteins. In invertebrate parasites, antioxidant systems have evolved in a diversity of both substrates and enzymes, representing a potential area in the design of anti-parasite strategies. The present review focus on the organization of the thiol-based antioxidant systems in invertebrate parasites. Differences between these taxa and its final mammal host is stressed. An understanding of the antioxidant defense mechanisms in this kind of parasites, as well as their interactions with the specific host is crucial in the design of drugs targeting these organisms.


Assuntos
Antioxidantes/metabolismo , Infecções por Protozoários/parasitologia , Compostos de Sulfidrila/metabolismo , Animais , Entamoeba/imunologia , Entamoeba/metabolismo , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Plasmodium/imunologia , Plasmodium/metabolismo , Infecções por Protozoários/imunologia , Schistosoma/imunologia , Schistosoma/metabolismo , Taenia/imunologia , Taenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...